Headwaters restoration and recovery in the Wine Country fire zone

Sustainable Water Resources Roundtable

Lisa Micheli, PhD
Pepperwood's Dwight Center for Conservation Science

May 3, 2019

Pepperwood Mission: advance science-based conservation science across our region and beyond

The new Dwight Center for Conservation Science

3200-acre reserve in Mayacamas, partnered with CA Academy of Sciences

a leader

in advancing the health of Northern California's land, water, and wildlife

Monitoring Locations at Pepperwood

Biological Research

- Breeding Bird Survey Points
- Wildlife Picture Index Cams

Vegetation Super Plots

- Grassland Monitoring Sites
- Vegetation Plots

Climate Monitoring

- Raingauge
- Antenna
- Micro Met Station

 Weather Station

Sentinel Site

Topo-climate-variability of temp, rainfall and humidity across preserve, and interface of coastal-inland meteorology

Full hydrologic cycle monitoring-fog drip, precipitation, soil moisture, stream flow, flow onset

Dominant plant communitiesforest and grassland longterm stations and plant phenology transects

Wildlife occupancycomplemented by bird, herpetofauna, invertebrate surveys

TBC3 vulnerability assessments

Water balance

Basin Characterization Model
translating climate to watershed response
translating climate to watershed response
translating climate to watershed response
the properties and contain the properties and parenties are properties and parenties and parenties are properties and parenties are parenties are parenties and parenties are parenties are parenties and parenties are parenties are parenties are parenties and parenties are parenties are parenties are parenties and parenties are parenti

inputs to 3 secondary impact models

River discharge

 Cumulative flow at a gage location (annual values) Flint 2016

Vegetation exposure

• Exposure rankings based on BCM and vegetation vulnerabilities

Thorne et al 2016

Fire risk

% Probability of burn over 30 years
 Krawchuk and Moritz 2014

direct project outputs

- Snow extent
- Water supply (runoff+recharge)
- In-situ recharge per unit area and per basins
 - Water deficits and soil storage

How can I get annual and seasonal time series BCM data for Bay Area watersheds?

BETA now available via the Climate Smart Watershed analyst on California Climate Commons! calcommons.climate.org/tbc3/ sf-bay-watershed-analyst

Adaptive Management Planning Goals

- Create a living document to serve as a road map for current and future managers of Pepperwood's land, water, and wildlife (2016)
- Integrate indigenous perspectives into understanding the history of this land and planning for its future
- Demonstrate parcel-scale climate smart management using the Terrestrial Biodiversity and Climate Change Collaborative's (TBC3's) applied climate science tools
- Maintain ecosystem functions and habitat connectivity, while allowing for landscape characteristics and species composition to adjust in response to an increasingly variable climate

PRESERVE-WIDE MANAGEMENT STRATEGY

Maintain Hydrologic Connectivity and Promote Drought Resilience

Minimize soil compaction and extent of impervious surfaces

Minimize soil erosion by avoiding concentrating flow around trails or roads and treating eroding roads and trails

Minimize impacts to riparian vegetation

Increase infiltration and soil moisture holding capacity by increasing soil carbon content and porosity through conservation grazing and native grass restoration

Protect springs and perennial water sources

Minimize vehicular soil compaction by prohibiting travel on wet roads or soils

Conserve water from our wells and other infrastructure

Minimize in-stream pollutants including nitrogen, bacteria, excess sediments, water temperature impacts

An unintended result of fire suppression = accumulation of fuel loads

Now thousands
(instead of
hundreds)
of trees per acre:
we are actively
thinning

What are hydrologic impacts of our forest management?

returning disturbance to the landscape

Sentinel site weather and hydrology

iButton Steam Flow Site Stream Gauging Site Weather Station

Temp and RH at Veg Plots

Micro Met Station

Spring

Pond Sites Streams

Capturing complexity of rainfall distributions

Rainfall, stream depth, and soil moisture

Climatic Water Deficit (mm/yr) Recent, 1981-2010

BAOSC Explorer tool output: 270 m resolution model

Fine-scaled assessments of patterns of increased aridity for ecological applications

270 m for comparison

Knowledge gaps

Pre-fire

- What are the dynamics of groundwater in fractured bedrock systems?
- How variable are Pepperwood's spring flows?
- How significant is fog to the preserve's water balance?
- How are our Conservation Grazing and Forest Management programs impacting hydrology?
- What are the patterns of streamflow in ungauged streams including Martin Creek (Brooks Creek watershed), Franz Creek, and Pepperwood Creek?

Regrouping from a historic event

https://www.livescience.com/60665-california-wildfire-animation-satellite.html

Tubbs Fire Official Perimeter, preliminary dozer lines and unburned regions October 2017

Key science questions

Landsat 8 Relativized Burn Ratio (RBR) 20170925 vs. 20171027

LC08_CU_001008_20170925_201701027_RBR.tif

High

High: 600

Low: -100

Tubbs Fire Perimeter (10/25/17)

TUBBS

Pepperwood_boundary

Preliminary LANDSAT analysis courtesy of Matt Clark, Sonoma State University

© Steve Ting/GBBC

What can satellites tell us?

What can our Sentinel Site sensor network tell us?

Our Bechtel weather station survived and has fire event and antecedent data

*Note the Bechtel House and nearby weather station did not burn.

What were the drivers and controls on fire behavior and burn intensity?

Did pre-fire treatments make any difference?

What is meaningful to assess in the field?

How are our watersheds projected to respond in terms of runoff and erosion?

What is meaningful to evaluate in the field to improve our empirical understanding of fire impacts on local watersheds?

Sonoma County Water Agency-USGS-Pepperwood Runoff and Sedimentation project

Sonoma County Water Agency hydrology monitoring stations

Rain gages, stream gages, soil moisture probes, sedimentation assessments, complementary flood warning system

Birchnell-Louise (1,328)

Pepperwood Preserve Pepperwood Ranch Natural Preserve

Franz Creek at Franz Valley School Rd

FOODER

Feature 4

How fire affects soil characteristics: sealing and hydrophobicing

Figure 2.8—The "tin roof" effect on burned chaparral watersheds as described by earlier watershed researchers include (A) the wettable ash and carbon surface layer, (B) the discontinuous water repellent layer, and (C) the wettable subsoil. (After DeBano 1969).

How do Northern CA watersheds respond after wildfires?

Questions:

1 – How severely did the 2017 Northern CA fires affect soil hydrologic properties?

2 - When do burned watersheds return to their reference runoff conditions? How does this vary with ecologic community/parent material?

3 – What are the rainfall thresholds for processes that transport sediment, and what are the expected hillslope sediment loads to streams?

Objective 1: Landscape path to recovery

March 5, 2018 October 2017

What does soil hydrologic recovery look like?

What does soil hydrologic recovery look like?

K_{fs} Field-saturated hydraulic conductivity

Metric describing ability of water to move through soil

a "lumped" parameter to gauge soil hydrologic change

Incorporates soil structure and texture, water repellency, organic content (Ebel and Martin, 2017)

Using infiltration time-series to calculate K_{fs}

$$I = C_1 t + C_2 \sqrt{t}$$

- Slope of line related to K_{fs} (Zhang, 1997)
- Requires independent knowledge of soil grian size distribution

What does soil hydrologic recovery look like?

 K_{fs} increases depend on a number of processes

Processes covary, but operate over different timescales

Peak changes expected on order of 2-7 years, but unknown for Northern California climatic regimes

Tension-disc infiltrometers

	Evergreen	Broadleaf	shrubland/chaparral	herbaceous	soil burn severity
Franciscan	PMD06, PMD07, SMD05	PMD12, PMD13	PMD05, SMD04	PMD01, PMD03, SMD03, PMD14	very low
Volcanic	AMD01, AMD03, AMD05, AMD08, AMD09, AMD11, PMD04	AMD06, PMD15	AMD02, AMD04	AMD07,AMD10	low
Sedimentary	AMD16, AMD17, PMD11	AMD18, AMD19, PMD10	AMD12, AMD14	AMD13, AMD15	moderate
Serpentinite	5MD06		PMD02, PMD08, SMD02, SMD07	SMD01	high
Silica Carbonate	PMD09				

Color = geology

Franciscan complex mélange Serpentinite

Quaternary sediments

Silica carbonate rock

Sonoma Volcanics

Shape = ecology

evergreen forest

broadleaf deciduous

herbaceous

shrubland/chaparral

Size = burn severity

Potential soil sealing after 2017/2018 rainy season

How do soil macro-pores (cracking, etc) impact recovery?

Site PMD01 (Franciscan mélange grassland) changes over time

- ~6 m resolution) satellite imagery
- Pre- and (hopefully) post-fire Lidar
- Correlate Pit2Pixel measurements to extrapolate over greater areas

Calculating hillslope sediment flux and stream loading

Bouverie Preserve, Glen Ellen, CA

Modeling

Calculate sediment flux: erosion rate x process area

	ls Ls	Landslide	
	Lss	Landslide Scarp	
	Ms	Modified Soil	
	Ofa	Agricultural Field	
	Ofh	Hot Spots	
	Rk	Rockfall	
	Scc	Soil Creep, canopy	
	Scg	Soil Creep, grass	
	Ss	Side Slope	
	Ti	Talus	
	Tr	Terrace	
	U	Urban	
	Vd	Valley Deposit	
	W	Waterways	

What will be the net effect on fuel loads and risk of future fire? Flood risks? Drought resilience?

Can we inform *extreme event*-smart strategies for rebuilding our community?

Help us fill knowledge gaps!

- 1. Fractured bedrock hillslope hydrology: storage, springs
- 2. Residence times, landscape memory, fog inputs
- 2. Relationships between soil carbon and moisture holding capacity, stream flow onset and duration
- 3. Can we develop small catchment indicators as a surrogate for distributed sampling of soil characteristics?
- 4. Fire recovery of soils, infiltration and erosion rates? How are Coast Range watersheds different?
- 5. How effective were fuel treatments in mitigating fire severity and in turn watershed impacts?
- 6. How can we assess hydrologic impacts of long-term vegetation mgt in a multi-benefit context?

Pepperwood Preserve

Highest burn severity to south of Preserve

15 monitoring sites across a range of vegetation and geology types

Additional ~34 grassland sites that have been monitored since 2015

Pepperwood Preserve

Highest burn severity to south of Preserve

Pepperwood Preserve

Highest burn severity to south of Preserve

15 monitoring sites across a range of vegetation and geology types